Innovation and Commercialization

Improving Compressive Strength of Fiber-Reinforced Polymeric Composites by **Comingling Fibers with Varying Moduli**

Tech ID: UTA 19-17

INVENTOR: Andrew Makeev

TECHNOLOGY NEED

High-modulus (HM) carbon fiber composites have growing demand in the aircraft industries to manufacture light weight aircraft structures. But extremely low fiber - direction compressive strength of HM composite makes it unfit for aircraft industries. This drawback of HM carbon fiber provides scope for improvement of compressive strength.

INVENTION DESCRIPTION/SOLUTION

The present invention proposes a method for enhancing the compressive strength of low fiber direction HM Composites. For improving the compressive strength of HM composites it is blended with Intermediate- Modulus (IM) and nano-silica. Comingling IM and HM fibers at the filament level in addition to the matrix nano-sized structural reinforcement throughout the composites provides additional support to the HM fiber, thereby improving the shear modulus to axial modulus ratio of the composite material.

APPLICATIONS

- Aerospace Industry
- Automobile Industry
- Robotics
- Mountain Bikes

KEY BENEFITS

- Light Weight
- High Compressive Strength
- Improved Shear Modulus

STAGE OF DEVELOPMENT

Component Validation/TRL= 4

INTELLECTUAL PROPERTY STATUS

Patent Pending

About the Inventors: Andrew Makeev

Contact information

For licensing, please contact Justin Sierchio (License Associate)

justin.sierchio.uta.edu innovation@uta.edu

P: 817.272.1132

Our mailing Address: Innovation and Commercialization

701 S Nedderman drive, Suite 350, Arlington, TX 76019

Connect with us:

